Baskin Engineering ULS SANF CRUL

ECE 245 Estimation and Introduction to Control of Stochastic Processes

 Final ProjectInstructor: Prof. Dejan Milutinovic
Student: Keng-yu Lin 1694084
Submitted on: June 10, 2020

Part 1 Setup the dynamics model

We have a dynamic model form as
$\begin{array}{cc}x_{1}=x & \\ x_{2}=y & X(t)=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{3}=v\end{array}\right], \quad F(X(t))=\left[\begin{array}{c}f_{1} \\ f_{2} \\ f_{3} \\ f_{4}\end{array}\right]=\left[\begin{array}{c}v(t) \cos \theta(t) \\ v(t) \sin \theta(t) \\ 0 \\ 0\end{array}\right] \\ x_{4}=\theta & \dot{X}(t)=\left[\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4}\end{array}\right]=\left[\begin{array}{c}v(t) \cos \theta(t) \\ v(t) \sin \theta(t) \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ \xi_{v}(t) \\ \xi_{\theta}(t)\end{array}\right]\end{array}$

We know that

$$
\begin{array}{lll}
\dot{v}=\xi_{v}(t) \quad, \quad d v=\delta_{v} d w_{v} \quad, \quad & w_{x} \sim N\left(0, W_{x}\right) \\
\dot{\theta}=\xi_{\theta}(t) \quad, \quad d \theta=\delta_{\theta} d w_{\theta} \quad, \quad & w_{y} \sim N\left(0, W_{y}\right)
\end{array}
$$

We can re-write the dynamic model form in discrete-time model as

$$
\begin{gathered}
X_{(k+1)}=\left[\begin{array}{l}
x_{(k+1)} \\
y_{(k+1)} \\
v_{(k+1)} \\
\theta_{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
x_{(k)} \\
y_{(k)} \\
v_{(k)} \\
\theta_{(k)}
\end{array}\right]+\left[\begin{array}{cc}
v_{(k)} \cos \left(\theta_{k}\right) \Delta T & -\theta_{(k)} v_{(k)} \sin \left(\theta_{k}\right) \Delta T \\
v_{(k)} \sin \left(\theta_{k}\right) \Delta T & \theta_{(k)} v_{(k)} \cos \left(\theta_{k}\right) \Delta T \\
& \\
& \delta_{v} W_{v} \\
\delta_{\theta} W_{\theta}
\end{array}\right] \\
Z_{(k)}=\left[\begin{array}{c}
X_{m(k)} \\
Y_{m(k)}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] X_{(k)}+\left[\begin{array}{c}
W_{x} \\
W_{y}
\end{array}\right]
\end{gathered}
$$

For the extended Kalman filter (EKF) form is that

$$
\begin{aligned}
\underline{\mathrm{x}}_{k+1} & =\underline{\Phi}_{k} \underline{\mathrm{x}}_{k}+\underline{\Gamma}_{k} \underline{\mathrm{w}}_{k} \\
\underline{\mathrm{y}}_{k} & =\underline{\mathrm{H}}_{k} \underline{\mathrm{x}}_{k}+\underline{\mathrm{v}}_{k}
\end{aligned}
$$

For our dynamic system model form can be written as

$$
\begin{gathered}
X_{(k+1)}=\left[\begin{array}{cccc}
1 & 0 & \cos \left(x_{4(k)}\right) \Delta T & -x_{3(k)} \sin \left(x_{4(k)}\right) \Delta T \\
0 & 1 & \sin \left(x_{4(k)}\right) \Delta T & x_{3(k)} \cos \left(x_{4(k)}\right) \Delta T \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1(k)} \\
x_{2(k)} \\
x_{3(k)} \\
x_{4(k)}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\delta_{v} & 0 \\
0 & \delta_{\theta}
\end{array}\right]\left[\begin{array}{l}
W_{v} \\
W_{\theta}
\end{array}\right] \\
Z_{(k)}=\left[\begin{array}{c}
X_{m(k)} \\
Y_{m(k)}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] X_{(k)}+\left[\begin{array}{c}
W_{x} \\
W_{y}
\end{array}\right]
\end{gathered}
$$

So the matrices can be represented as

$$
\begin{aligned}
& \underline{\Phi}_{k}=\left[\begin{array}{cccc}
1 & 0 & \cos \left(x_{4(k)}\right) \Delta T & -x_{3(k)} \sin \left(x_{4(k)}\right) \Delta T \\
0 & 1 & \sin \left(x_{4(k)}\right) \Delta T & x_{3(k)} \cos \left(x_{4(k)}\right) \Delta T \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \Gamma_{k}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\delta_{v} & 0 \\
0 & \delta_{\theta}
\end{array}\right] \\
& \underline{H}_{k}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
& \underline{V}_{k}=\left[\begin{array}{l}
W_{x} \\
W_{y}
\end{array}\right] \\
& E\left[W_{k} W_{k}^{T}\right]=Q_{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& E\left[V_{k} V_{k}^{T}\right]=R_{k}=\left[\begin{array}{cc}
w_{x} & 0 \\
0 & w_{y}
\end{array}\right] \\
& \underline{\mathrm{P}}_{k}=\left[\begin{array}{cccc}
\operatorname{var}[x] & 0 & 0 & 0 \\
0 & \operatorname{var}[y] & 0 & 0 \\
0 & 0 & \operatorname{var}[v] & 0 \\
0 & 0 & 0 & \operatorname{var}[\theta]
\end{array}\right]
\end{aligned}
$$

Part 2 Setup the initial guess

Now we need to define the initial state and initial covariance matrices.

2.1 Initial state guess

For x and y, we can choose the first measurements $x_{m 1}$ and $y_{m 1}$ from the video as the initial guess x_{1} and x_{2}.

For the velocity, we can use first and second measurement's points $x_{m 1} x_{m 2} y_{m 1} y_{m 2}$ to be an initial guess.

$$
v_{0}=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{\left(\frac{x_{m 2}-x_{m 1}}{d T}\right)^{2}+\left(\frac{y_{m 2}-y_{m 1}}{d T}\right)^{2}}
$$

For the θ, we can see the robot is moving from the left side to the right side from the video so that we can guess $\theta_{0}=\pi$.

So we can get our \hat{x}_{0}

$$
\hat{x}_{0}=\left[\begin{array}{l}
x_{(0)} \\
y_{(0)} \\
v_{(0)} \\
\theta_{(0)}
\end{array}\right]=\left[\begin{array}{c}
x_{m(1)} \\
y_{m(1)} \\
v_{(0)} \\
\pi
\end{array}\right]
$$

2.2 Initial covariance matrices guess

The data are derived from the video based on (1) the image resolution is 320×240 (2) the robot size is about 70 mm diameter (3) the distance from the front light to both backlights is 61 mm and (4) the distance between the two backlights is 46 mm .

We can see from the video frames, the diameter of the red LED light is $\emptyset=4.5 \mathrm{~mm}=0.45 \mathrm{~cm}$.
So we can assume the standard deviation (std) of one red LED light is $s t d=0.45 \mathrm{~cm}$, then the variance of one red LED light is $(0.45)^{2}$, and we have 3 LED lights, so the variance of $\operatorname{var}[x]$ and $\operatorname{var}[y]$ is

$$
\operatorname{var}[x]=\operatorname{var}[y]=\frac{3 *(0.45)^{2}}{9}=0.0675
$$

For the $\operatorname{var}\left[v\right.$], we can found all section's velocity $v_{1} v_{2} v_{3} v_{4} \ldots . . v_{n}$

$$
\sum_{i=1}^{n} \sqrt{\left(\frac{x_{m(i+1)}-x_{m i}}{d T}\right)^{2}+\left(\frac{y_{m(i+1)}-y_{m i}}{d T}\right)^{2}}
$$

And take approximate derivatives from v_{5} to v_{35} and take standard deviation for them We can get

$$
\begin{gathered}
\text { Std_v }=\operatorname{Std}[\operatorname{diff}(\mathrm{v}(5: 35))] \\
\operatorname{Std} _\mathrm{v}=0.6984 \\
\operatorname{var}[v]=(0.9684)^{2}=0.4877
\end{gathered}
$$

For the var [θ], we use HeadingAngle_rad.csv file data and trim the data range not in $(-\pi, \pi]$ but in continuous smooth data. The reason to do this is that it can minimize the approximate derivatives when two data points are near $-\pi$ and π.

Then we can take approximate derivatives and retake standard deviation for those data.

$$
\begin{gathered}
\text { Std } \theta=\operatorname{Std}[\operatorname{diff}(\text { HeadingAngle })] ; \\
\text { Std_ } \theta=0.2201 \\
\operatorname{var}[\theta]=(0.2201)^{2}=0.0484
\end{gathered}
$$

We can get the matrix \underline{P}_{0}

$$
\underline{P}_{0}=\left[\begin{array}{cccc}
0.0675 & 0 & 0 & 0 \\
0 & 0.0675 & 0 & 0 \\
0 & 0 & 0.4877 & 0 \\
0 & 0 & 0 & 0.0484
\end{array}\right]
$$

2.3 Initial Gaussian-distributed noise

Assume W_{x} and $W_{y}=\operatorname{var}[x]$ and $\operatorname{var}[y]$, then

$$
R=\left[\begin{array}{cc}
0.0675 & 0 \\
0 & 0.0675
\end{array}\right]
$$

Assume $\delta_{v}=\frac{1}{4} \sqrt{d T}, \delta_{\theta}=\frac{20 \pi}{180} \sqrt{d T}$ and $\left(d T=\frac{1}{3}\right)$ than

$$
\Gamma_{k}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0.1443 & 0 \\
0 & 0.2015
\end{array}\right]
$$

Part 3 Discrete-time Kalman filter model

$$
\underline{\mathrm{x}}_{k+1}=\underline{\Phi}_{k} \underline{\mathrm{x}}_{k}+\underline{\Gamma}_{k} \underline{\mathrm{w}}_{k}
$$

Prediction step

$$
\begin{aligned}
\underline{\hat{x}}_{k+1} & =\underline{\Phi}_{k} \underline{\hat{\mathbf{x}}}_{k} \\
\underline{\mathrm{P}}_{k+1} & =\underline{\Phi}_{k} \underline{\mathrm{P}}_{k} \underline{\Phi}_{k}^{T}+\underline{\Gamma}_{k} \underline{\mathrm{Q}}_{k} \underline{\Gamma}_{k}^{T}
\end{aligned}
$$

Observations (general)

$$
\underline{\mathrm{y}}_{k}=\underline{\mathrm{H}}_{k} \underline{\mathrm{x}}_{k}+\underline{\mathrm{v}}_{k}
$$

Update (general)

$$
\underline{\hat{\mathbf{x}}}_{k}(+)=\underline{\hat{x}}_{k}(-)+\underline{\mathrm{K}}\left(\underline{\mathrm{y}}_{k}-\underline{\mathrm{H}}_{k} \hat{\mathrm{x}}_{k}(-)\right)
$$

Optimal gain, or Kalman filter gain (general)

$$
\begin{aligned}
\underline{\mathrm{K}} & =\underline{\mathrm{P}}(-) \underline{\mathrm{H}}^{T}\left(\underline{\mathrm{HP}}(-) \underline{\mathrm{H}}^{T}+\underline{\mathrm{R}}\right)^{-1} \\
\underline{\mathrm{P}}(+) & =(I-\underline{\mathrm{K}} \underline{H}) \underline{\mathrm{P}}(-)
\end{aligned}
$$

Initial guess: $\underline{\hat{x}}_{0}, \underline{\mathrm{P}}_{0}$
Prediction: $\underline{\hat{x}}_{k}$, and $\underline{\mathrm{P}}_{k}$ are known

$$
\begin{aligned}
& \underline{\hat{\mathbf{x}}}_{k+1}(-)=\underline{\Phi}_{k} \hat{\underline{\hat{x}}}_{k} \\
& \underline{\mathrm{P}}_{k+1}(-)=\underline{\Phi}_{k} \underline{\mathrm{P}}_{k} \underline{\Phi}_{k}^{T}+\underline{\Gamma}_{k} \underline{\mathrm{Q}}_{k} \underline{\Gamma}_{k}^{T}
\end{aligned}
$$

Gain (Version 1):

$$
\underline{\mathrm{K}}_{k+1}=\underline{\mathrm{P}}_{k+1}(-) \underline{\mathrm{H}}_{k+1}^{T}\left(\underline{\mathrm{H}}_{k+1} \underline{\mathrm{P}}_{k+1}(-) \underline{\mathrm{H}}_{k+1}^{T}+\underline{\mathrm{R}}_{k+1}\right)^{-1}
$$

Update (Version 1):

$$
\begin{aligned}
& \underline{\hat{\mathbf{x}}}_{k+1}=\underline{\hat{\mathbf{x}}}_{k+1}(-)+\underline{\mathrm{K}}_{k+1}\left(\underline{\mathrm{y}}_{k+1}-\underline{\mathrm{H}}_{k+1} \underline{\hat{\mathbf{x}}}_{k+1}(-)\right) \\
& \underline{\mathrm{P}}_{k+1}=\left(I-\underline{\mathrm{K}}_{k+1} \underline{\mathrm{H}}_{k+1}\right) \underline{\mathrm{P}}_{k+1}(-)
\end{aligned}
$$

Part 4 Second-order filter model

$$
\begin{aligned}
\underline{\mathrm{x}}_{k+1} & =\underline{\mathrm{f}}_{k}\left(\underline{\mathrm{x}}_{k}, \underline{\mathrm{w}}_{k}\right) \\
\underline{\mathrm{x}}_{k} & =\underline{\mathrm{h}}_{k}\left(\underline{\mathrm{x}}_{k}\right)+\underline{\mathrm{v}}_{k}
\end{aligned}
$$

1. Linearization for the prediction step, $\underline{\mathrm{x}}_{k} \in R^{n}$ Let us consider a single state x^{i}

$$
x_{k+1}^{i}=f_{k}^{i}\left(\underline{\mathrm{x}}_{k}, \underline{\mathrm{w}}_{k}\right)
$$

then the second order Taylor expansion is

$$
\begin{aligned}
x_{k+1}^{i} & =f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)+\frac{\partial f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}} \delta \underline{\mathrm{x}}_{k}+\frac{\partial f_{k}^{i}\left(\hat{\underline{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{w}}_{k}} \underline{\mathrm{w}}_{k} \\
& +\frac{1}{2} \delta \underline{\mathrm{x}}_{k} \frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \delta \underline{\mathrm{x}}_{k}^{T}+\frac{1}{2} \underline{\mathrm{w}}_{k} \frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{w}}_{k}^{2}} \underline{\mathrm{w}}_{k}^{T}+\delta \underline{\mathrm{x}}_{k} \frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k} \partial \underline{\mathrm{w}}_{k}} \underline{\mathrm{w}}_{k}^{T} \\
& + \text { hot }
\end{aligned}
$$

$$
\begin{aligned}
& E\left\{x_{k+1}^{i}\right\}=f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)+E\left\{\frac{1}{2} \delta \underline{\mathrm{x}}_{k} \frac{\partial^{2} f_{k}^{i}\left(\underline{\underline{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \delta \underline{\mathrm{x}}_{k}^{T}+\frac{1}{2} \underline{\mathrm{w}}_{k} \frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{w}}_{k}^{2}} \underline{\mathrm{w}}_{k}^{T}\right\} \\
& E\left\{x_{k+1}^{i}\right\}=f_{k}^{i}\left(\underline{\hat{x}}_{k}, 0\right) \delta \underline{\mathrm{x}}_{k}+\frac{1}{2} \operatorname{tr}\left[\frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} E\left\{\delta \underline{\mathrm{x}}_{k}^{T} \delta \underline{\mathrm{x}}_{k}\right\}\right]+\frac{1}{2} \operatorname{tr}\left[\frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{w}}_{k}^{2}} E\left\{\underline{\mathrm{w}}_{k}^{T} \underline{\mathrm{w}}_{k}\right\}\right] \\
& E\left\{x_{k+1}^{i}\right\}=f_{k}^{i}\left(\underline{\hat{\mathbf{x}}}_{k}, 0\right)+\frac{1}{2} \operatorname{tr}\left[\frac{\partial^{2} f_{k}^{i}\left(\underline{\underline{\hat{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \underline{\mathrm{P}}_{k}\right]+\frac{1}{2} \operatorname{tr}\left[\frac{\partial^{2} f_{k}^{i}\left(\underline{\underline{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{w}}_{k}^{2}} Q_{k}\right]
\end{aligned}
$$

Let us define $\underline{\mathrm{e}}_{1}=\left[\begin{array}{llll}1 & 0 & 0 \ldots & 0\end{array}\right]^{T}, \underline{\mathrm{e}}_{2}=\left[\begin{array}{llll}0 & 1 & 0 & \ldots\end{array}\right]^{T}, \ldots \underline{\mathrm{e}}_{n}=\left[\begin{array}{llll}0 & 0 & 0 \ldots & 1\end{array}\right]^{T}$, then the predition step can be written as

$$
\begin{gathered}
\underline{\underline{x}}_{k+1}(-)=\underline{\mathrm{f}}_{k}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)+\underline{\mathrm{b}}_{k} \\
\underline{\mathrm{~b}}_{k}=\frac{1}{2} \sum_{i=1}^{n} \underline{\mathrm{e}}_{i}(\operatorname{tr}[\underbrace{\left.\frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \underline{\mathrm{P}}_{k}\right]+\operatorname{tr}[\underbrace{\frac{\partial^{2} f_{k}^{i}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{w}}_{k}^{2}}}_{\underline{\mathrm{G}}_{k}^{i}} Q_{k}]), \underline{\mathrm{e}}_{i} \in R^{n}}_{\underline{\mathrm{F}}_{k}^{i}} \underset{\underline{\mathrm{~b}}_{k}=\frac{1}{2} \sum_{i=1}^{n} \underline{\mathrm{e}}_{i}\left(\operatorname{tr}\left[\underline{\mathrm{~F}}_{k}^{i} \underline{\mathrm{P}}_{k}\right]+\operatorname{tr}\left[\underline{\mathrm{G}}_{k}^{i} Q_{k}\right]\right), \underline{\mathrm{e}}_{i} \in R^{n}}{\underline{\mathrm{P}}_{k+1}(-)=\underline{\Phi}_{k} \underline{\mathrm{P}}_{k} \underline{\Phi}_{k}^{T}+\underline{\Gamma}_{k} \underline{\mathrm{Q}}_{k} \underline{\Gamma}_{k}^{T}} \\
\underline{\Phi}_{k}=\frac{\partial \underline{\mathrm{f}}_{k}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\mathrm{x}}_{k}}, \quad \underline{\Gamma}_{k}=\frac{\partial \underline{\mathrm{f}}_{k}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)}{\partial \underline{\underline{\mathrm{w}}}_{k}}
\end{gathered}
$$

2. Linearization for the update step, $\underline{y}_{k} \in R^{r}$

$$
\underline{\mathrm{y}}_{k}=\underline{\mathrm{h}}_{k}\left(\underline{\hat{\mathrm{x}}}_{k}(-), 0\right)+\frac{\partial \underline{\mathrm{h}}_{k}\left(\underline{\underline{\hat{x}}}_{k}(-), 0\right)}{\partial \underline{\mathrm{x}}_{k}} \delta \underline{\mathrm{x}}_{k}+\frac{1}{2} \delta \underline{\mathrm{x}}_{k}^{T} \frac{\partial^{2} \underline{\mathrm{~h}}_{k}\left(\underline{\hat{\mathrm{x}}}_{k}(-), 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \delta \underline{\mathrm{x}}_{k}+\underline{\mathrm{v}}+h o t
$$

Obviously the innovation term for i the measurement will have correction term

$$
E\left\{\frac{1}{2} \delta \underline{\mathrm{x}}_{k}^{T} \frac{\partial^{2} h_{k}^{i}\left(\hat{\underline{\mathrm{x}}}_{k}(-), 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \delta \underline{\mathrm{x}}_{k}\right\}=\frac{1}{2} \operatorname{tr}\left[\frac{\partial^{2} h_{k}^{i}\left(\underline{\underline{\hat{x}}}_{k}(-), 0\right)}{\partial \underline{\mathrm{x}}_{k}^{2}} \underline{\mathrm{P}}_{k}(-)\right]
$$

Therefore, the correction term also has to be included in the update of the covariance matrix.

Predicition step:

$$
\begin{aligned}
\underline{\hat{x}}_{k+1}(-) & =\underline{\mathrm{f}}_{k}\left(\underline{\hat{\mathrm{x}}}_{k}, 0\right)+\underline{\mathrm{b}}_{k} \\
\underline{\mathrm{~b}}_{k} & =\frac{1}{2} \sum_{i=1}^{n} \underline{\mathrm{e}}_{i}\left(\operatorname{tr}\left[\underline{\mathrm{~F}}_{k}^{i} \underline{\mathrm{P}}_{k}\right]+\operatorname{tr}\left[\underline{\mathrm{G}}_{k}^{i} Q_{k}\right]\right), \underline{\mathrm{e}}_{i} \in R^{n} \\
\underline{\mathrm{P}}_{k+1}(-) & =\underline{\Phi}_{k} \underline{\mathrm{P}}_{k} \underline{\Phi}_{k}^{T}+\underline{\Gamma}_{k} \underline{\mathrm{Q}}_{k} \underline{\Gamma}_{k}^{T}
\end{aligned}
$$

Update step:

$$
\begin{aligned}
{\left[S_{k+1}\right]_{i j} } & =\frac{1}{2} \operatorname{tr}\left[\underline{\mathrm{M}}_{k+1}^{i} \underline{\mathrm{P}}_{k+1}(-) \underline{\mathrm{M}}_{k+1}^{j} \underline{\mathrm{P}}_{k+1}(-)\right] \\
\underline{\mathrm{P}}_{k+1} & =\underline{\mathrm{P}}_{k+1}(-)-\underline{\mathrm{P}}_{k+1}(-) \underline{\mathrm{H}}_{k+1}^{T}\left[\underline{\mathrm{H}}_{k+1} \underline{\mathrm{P}}_{k+1}(-) \underline{\mathrm{H}}_{k+1}^{T}+\underline{\mathrm{R}}_{k+1}+\underline{\mathrm{S}}_{k+1}\right]^{-1} \underline{\mathrm{H}}_{k+1} \underline{\mathrm{P}}_{k+1}(-) \\
\underline{\mathrm{K}}_{k+1} & =\underline{\mathrm{P}}_{k+1} \underline{\mathrm{H}}_{k+1}^{T}\left(\underline{\mathrm{R}}_{k+1}+\underline{\mathrm{S}}_{k+1}\right)^{-1} \\
\underline{\mathrm{~s}}_{k+1} & =-\frac{1}{2} K_{k+1} \sum_{i=1}^{r} \underline{\mathrm{e}}_{i} \operatorname{tr}\left[\underline{\mathrm{M}}_{k+1}^{i} \underline{\mathrm{P}}_{k+1}(-)\right], \underline{\mathrm{e}}_{i} \in R^{r} \\
\underline{\hat{\mathrm{x}}}_{k+1} & =\underline{\hat{\mathrm{x}}}_{k+1}(-)+\underline{\mathrm{K}}_{k+1}\left(\underline{\mathrm{~N}}_{k+1}-\underline{\mathrm{h}}_{k+1}\left(\hat{\underline{\hat{x}}}_{k+1}(-)\right)+\underline{\mathrm{s}}_{k+1}\right.
\end{aligned}
$$

Part 5 Result

Figure 1. Robot Center

Figure 2. Estimated Robot Velocity

Figure 3. Estimated Robot Orientation Angle

From the plots, we can see that the EKF and second-order filter method have a very similar result; the most obvious difference is on estimated robot velocity.

References

[1] Milutinovic, D., ECE 245 Lecture Notes 2020 spring
[2] Milutinovic, D., ECE 245 homework 6 solution
[3] Arthur Gelb and The Analytic Sciences Corporation. 1974. Applied Optimal Estimation. The MIT Press.

```
%ECE245 KengyuLin Initial covariance matrices guess & measure video frame
clear;
clc;
XYdata = csvread('XYData_cm.csv');
HeadingAngle = csvread('HeadingAngle_rad.csv');
xm = XYdata(:,1);
ym = XYdata(:, 2);
% find the initial variance of velocity var[v]
T=45;
dT=(1/3);
for i=2:length(xm)
    v(i)= sqrt(((ym(i)-ym(i-1))/dT)^2 + ((xm(i)-xm(i-1))/dT)^2);
end
for i=1:45
    if HeadingAngle(i)<-1
            HeadingAngle(i) = HeadingAngle(i) +2*pi;
    end
end
% find the initial variance of velocity var[v]
std_v = std(diff(v(5:35)))
var_v = (std_v)^2
% find the initial variance of theta var[theta]
std_theta=std(diff(HeadingAngle))
var_theta = (std_theta)^2
% measure video frame
% v = VideoReader('ProjectMovie.AVI');
% implay('ProjectMovie.AVI');
```

std_v $=$
0.6984
var_v =
0.4877
std_theta $=$
0.2201
var_theta =
0.0484

```
% ECE245Final Keng-yu Lin
clear;
clc;
XYdata = csvread('XYData_cm.csv');
HeadingAngle = csvread('HeadingAngle_rad.csv');
xm = XYdata(:,1);
ym = XYdata(:,2);
T=45;
dT=1/3;
v0=sqrt(((ym(2)-ym(1))/dT)^2 + ((xm(2)-xm(1))/dT)^2); %initial velocity
x_ekf(:,1)=[xm(1);ym(1);v0;pi]; %initial state
Wx=0.0675;
Wy=0.0675;
R=[Wx 0;0 Wy];
P(:,:,1)=[0.0675 0 0 0;
    0 0.0675 0 0;
    0 0 0.4877 0;
    0 0 0 0.0484];
phi(:,:,1) = [1 0 dT*cos(x_ekf(4,1)) -dT*x_ekf(3,1)*sin(x_ekf(4,1));
    0 1 dT*sin(x_ekf(4,1)) dT*x_ekf(3,1)*\operatorname{cos}(x_ekf(4,1));
            0 0 1 0;
            0 0 0 1];
gamma = [0 0;
    0 0;
    0.25*sqrt(dT) 0;
    0 (20*pi/180)*sqrt(dT)];
Q = [1 0;0 1];
H = [1 0 0 0;0 1 0 0];
```

```
%%%================================EKF==================================EKF
for i=1:1:T-1
    % Prediction
        xn(:,i+1) = x_ekf(:,i)+[x_ekf(3,i)*Cos(x_ekf(4,i));
                        x_ekf(3,i)*sin(x_ekf(4,i));
                            0;
                            0] *dT;
        phi(:,:,i) = [1 0 dT*cos(x_ekf(4,i)) -dT*x_ekf(3,i)*sin(x_ekf(4,i));
            0 1 dT*sin(x_ekf(4,i)) dT*x_ekf(3,i)*cos(x_ekf(4,i));
            0 0 1 0;
            0 0 0 1];
        Pn(:,:,i+1) = phi(:,:,i)*P(:,:,i)*phi(:,:,i)' + gamma*Q*gamma';
    % Gain
        K(:,:,i+1) = Pn(:,:,i+1)*H'*inv(H*Pn(:,:,i+1)*H' + R);
```

```
    % Update
    x_ekf(:,i+1) = xn(:,i+1) + K(:,:,i+1)*([xm(i+1);ym(i+1)] - H*xn(:,i+1));
    P(:,:,i+1) = (eye(4) - K(:,:,i+1)*H)*Pn(:,:,i+1);
    % To fix the angle theta(x(4,:)) in range (-pi,pi]
    if x_ekf(4,i)>pi
        x_ekf(4,i) = x_ekf(4,i)-2*pi;
    end
    if x_ekf(4,i)<-pi
        x_ekf(4,i) = x_ekf(4,i)+2*pi;
    end
end
%%%=============================SOF================================ SOF
x_sof=x_ekf(:,1);
P}=[0.0387 0 0 0; 
    0 0.0387 0 0;
    0 0 0.0698 0;
    0 0 0 0.03];
for k=2:45
    %F matrix
            F = zeros (4,4,4);
            F(:,:,1)=[00 0 0 0;
                    0 0 0 0;
                    0 0 0 -sin(x_sof(4,end))*dT;
                    0 0 -sin(x_sof (4,end))*dT, -x_sof(3,end)* cos (x_sof (4,end))*dT];
            F(:,:,2)=[[0 0 0 0;
                    0 0 0 0;
                        0 0 0 cos (x sof (4, end))*dT;
                    0 0 cos (x sof(4,end))*dT, -x sof(3,end)*sin(x sof(4,end))*dT];
            F(:,:,3)= zeros (4,4);
            F(:,:,4)= zeros (4,4);
    %G matrix
            G = zeros (2,2,4);
    % Prediction
            b=0;
            e=eye (4);
                for i=1:4
                    b = b + (e(:, i)*(trace(F(:,:,i)*P)+trace(G(:,:,i)*Q)));
            end
        b}=\textrm{b}/2\mathrm{ ;
        x_sofn = [x_sof(1, end) +x_sof(3,end)*\operatorname{cos}(x_sof(4,end))*dT;
                x_sof (2,end) +x_sof (3, end)*sin(x_sof (4, end))*dT;
                x_sof (3,end);
                x_sof (4,end)]+b;
            phi = [1 0 cos(x_sofn(4))*dT, -x_sofn(3)*sin(x_sofn(4))*dT;
                    0 1 sin(x_sofn(4))*dT, x_sofn(3)*\operatorname{cos (x_sofn(4))*dT;}
                    0 0 1 0;
```

```
            0 0 0 1];
            Pn = phi*P*phi' + gamma*Q*gamma';
    %M matrix
        M = zeros(4,4,2);
    % Update
        S = zeros (2,2);
        for i=1:2
            for j=1:2
                S(i,j)=1/2*trace (M(:,:,i)*Pn*M(:,:,j)*Pn);
            end
                end
        P = Pn - Pn*H'*inv(H*Pn*H'+R+S)*H*Pn;
        K = P*H'*inv(R+S);
        y = [xm(k) ym(k)]';
        h = [x_sofn(1);x_sofn(2)];
        s = 0;
        e = eye(2);
            for i=1:2
                s = s +e(:,i)*trace(M(:,:,i)*Pn);
            end
        s = -1/2*K*s;
    x_sof(:,end+1) = x_sofn + K* (y-h)+ s;
    % To fix the angle theta(x(4,:)) in range (-pi,pi]
        if x_sof(4,end)>pi
            x_sof(4,end) = x_sof(4,end) - 2*pi;
    end
    if x_sof(4,end)<-pi
            x_sof(4,end) = x_sof(4,end)+2*pi;
    end
end
figure (1)
plot(xm,ym)
hold on
plot (x_ekf(1,:), x_ekf(2,:),'-*')
hold on
plot (x_sof(1,:), x_sof (2,:),'-o')
title('Robot Center')
xlabel('X Position (cm)');
ylabel('Y Position (cm)');
legend('XYData from video','Extended Kalman Filter (EKF)','Second Order Filter (SOF)');
figure (2)
plot(x_ekf(3,:),'-*')
hold on
plot(x_sof(3,:),'-o')
title('Estimated Robot Velocity')
xlabel('Time *(1/3s)');
ylabel('Estimated Robot Velocity (cm/(1/3s))');
legend('Extended Kalman Filter (EKF)','Second Order Filter (SOF)');
```

```
figure(3)
plot(HeadingAngle)
hold on
plot(x_ekf(4,:),'-*')
hold on
plot(x_sof(4,:),'-o')
title('Estimated Robot Orientation Angle')
xlabel('Time *(1/3s)');
ylabel('Estimated Robot Orientation Angle (rad)');
legend('HeadingAngle \alpha(k)','Extended Kalman Filter (EKF) 0(k)','Second Order Fil
ter (SOF) 0(k)');
```


