國立中央大學

介面實驗

實驗9

(A/D 轉換實驗-應用 A/D 轉換 IC)

授課教師:葉則亮 教授

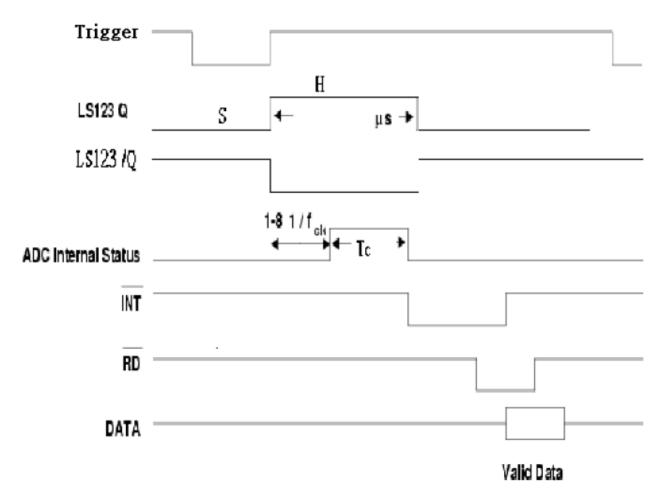
班級:A班

983003037 林耕宇

993003036 蔡易軒

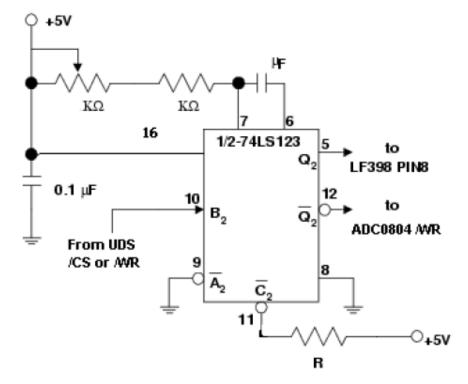
100.5.2

機電介面工作日誌


年 月 日

組		姓	林耕宇	學	983003037
別		名	蔡易軒	號	993003036
實驗起始時間				費	
實驗結束時間				時	
所					
遭					
遇					
問					
題					
解					
決					
方					
法					
ė n					
完及					
成心					
項得 目·					
建其					
議他					
及・					

實驗步驟:


1 時序規劃

AD0804內部在作轉換工作的時序,首先它會用掉大約1-8個工作週期(1/fck)做起始工作,然後再進行比對轉換工作,比對轉換工作需時TC,最少要103微秒約66個工作週期最高114微秒,約73個工作週期。

2 硬體設置

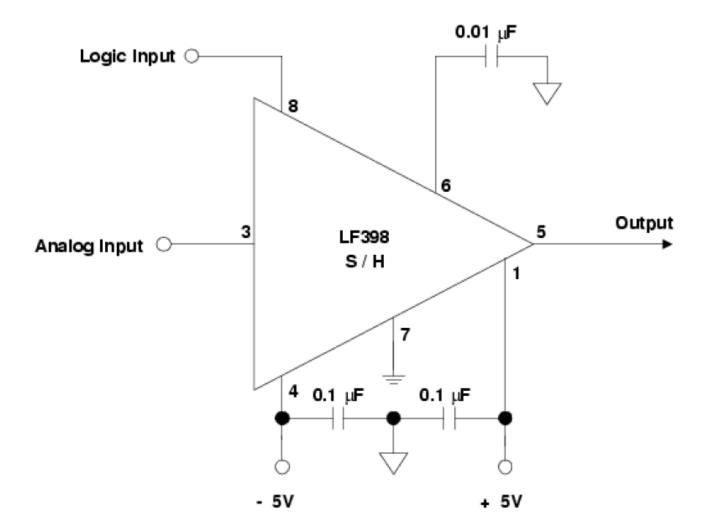
i. 74LS123

The output pulse duration is primarily a function of the external capacitor and resistor. For $C_{\text{ext}} > 1000 \text{ pF}$, the output pulse duration (t_{W}) is defined as:

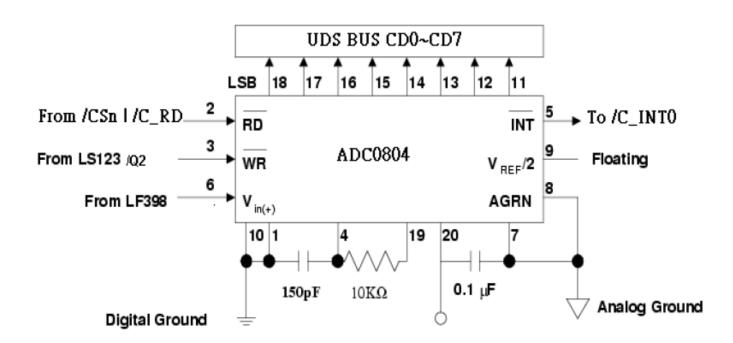
$$t_{W} = K \cdot R_{T} \cdot C_{ext} \left(1 + \frac{0.7}{R_{T}} \right)$$

е

K is 0.32 for '122, 0.28 for '123 and '130


 R_T is in $k\Omega$ (internal or external timing resistance.)

Cext is in pF


tw is in na

做實驗時選用 0.1uF 電容+10k 可變電阻


ii.LF398

iii. ADC0804

3. 軟體寫作

變數	變數資料型態	功能	
AD	unsigned char xdata AD _at_ 0xf1f0;	AD 定址	
k	int	記數 AD 值	
t	int	記數中斷次數	
X50ms	int	校正頻率	
f	unsigned int	紀錄頻率	

printf("輸入取樣頻率(max 5000hz):\n");

scanf("%d", &f);

c = 50000/f;

CW = 0x16; // 8254 Counter0 Mode3

C0 = 2; // Counter0 計數值 = 2

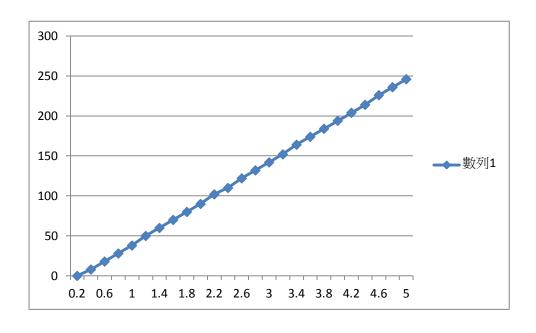
CW = 0x56; // 8254 Counterl Mode3

C1 = 6; // Counter1 計數值 = 2

CW = 0x96; // 8254 Counterl Mode3

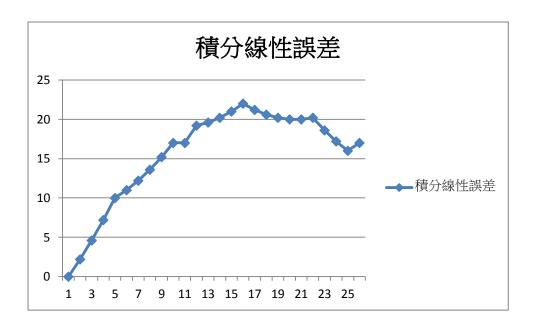
C2 = c; // Counter2 計數值 = 2

CW55=0x82;

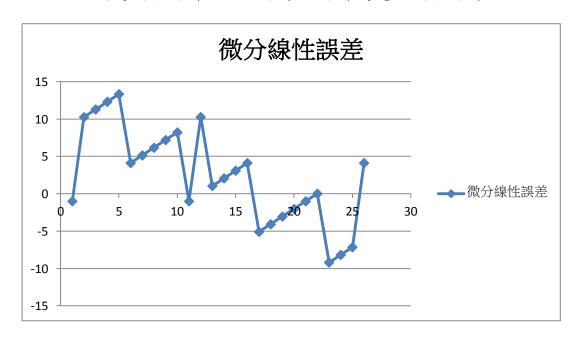

```
IE=0x81;
IT0=1;
while (1) {
//AD_convflag = 0 ;
if(t==1){
  for(k=0;k<51;k++)
    {printf("%d\n", (unsigned int)A[k]);}t=0;}
}}
void T2_int(void) interrupt 0
{
    A[k] = AD_value;k++;
if(k==50){IE=0x80;t=1;}}</pre>
```

實驗數據:

1. 轉換函數曲線


性能分析:

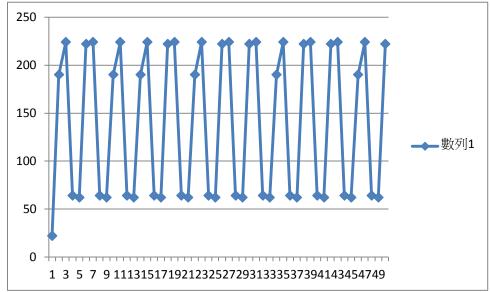
I、A/D轉換函數曲線:以輸入之Analog訊號為橫軸,輸出之數位訊號為縱軸,將每個實測臨界電壓之上兩跳躍數位值之間拉一條垂直線,以水平線連接各垂直線之端點,可得A/D轉換曲線。


理論 AD 轉換 後數位表	實測 AD 轉換後 數位表	對應類比電壓	誤差	積分線性誤差	微分線性誤差
0	0	0	0	0	-1
10.2	8	0.2	2.2	2.2	10.264
20.4	18	0.4	2.4	4.6	11.288
30.6	28	0.6	2.6	7.2	12.312
40.8	38	0.8	2.8	10	13.336
51	50	1	1	11	4.12
61.2	60	1.2	1.2	12.2	5.144
71.4	70	1.4	1.4	13.6	6.168
81.6	80	1.6	1.6	15.2	7.192
91.8	90	1.8	1.8	17	8.216
102	102	2	-1.279E-13	17	-1
112.2	110	2.2	2.2	19.2	10.264
122.4	122	2.4	0.4	19.6	1.048
132.6	132	2.6	0.6	20.2	2.072
142.8	142	2.8	0.8	21	3.096
153	152	3	1	22	4.12
163.2	164	3.2	-0.8	21.2	-5.096
173.4	174	3.4	-0.6	20.6	-4.072
183.6	184	3.6	-0.4	20.2	-3.048
193.8	194	3.8	-0.2	20	-2.024
204	204	4	0	20	-1
214.2	214	4.2	0.2	20.2	0.024
224.4	226	4.4	-1.6	18.6	-9.192
234.6	236	4.6	-1.4	17.2	-8.168
244.8	246	4.8	-1.2	16	-7.144
255	254	5	1	17	4.12

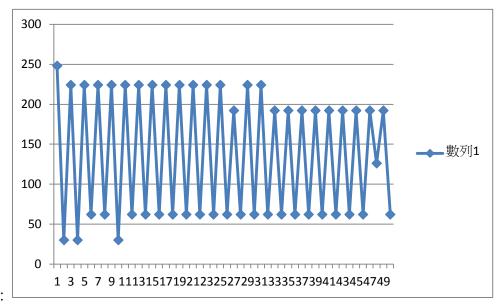
□、積分線性誤差:以最大及最小臨界電壓拉直線,所有的臨界電壓 與此線的水平距離即為該值的積分線性誤差,最大的積分線性誤差即為電 路的積分線性誤差。

電路的積分線性誤差=22

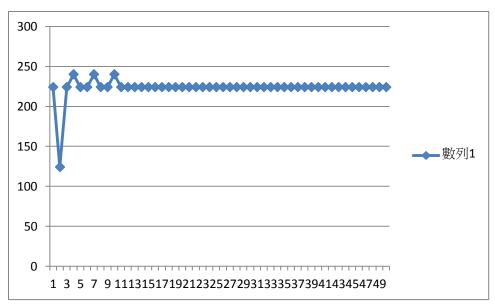
Ⅲ、微分線性誤差:計算V(n,n+1)-V(n-1,n)除以LSB之後減一,即為n值的微分線性誤差,所有的微分線性誤差中最大者即為電路的微分線性誤差。

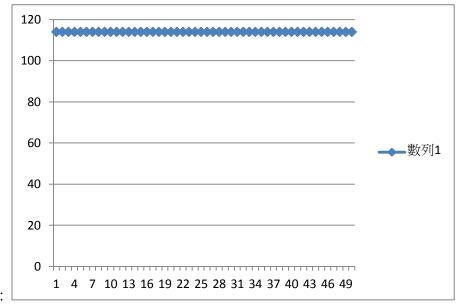

電路的微分線性誤差=13.336

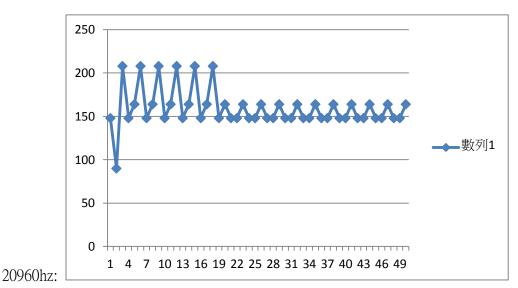
2. 最高取樣頻率:


選用 0.1uF電容+10k可變電阻,在取樣頻率為6000hz時ADC中斷輸出會不明顯而失真即失去規律性,因此選用5240HZ當為最高取樣頻率。

3. 數位示波器試用:


分別對產波器所產生之0.25,0.5,1,2,4倍最高取樣頻率之弦波取樣存檔


1310hz:


2620hz:

5240hz:

10480hz:

問題:

I、請問您在這個實驗中您學到了什麼?

如何將ad卡呈現在麵包版上去進行類比轉數位的工作。

Ⅱ、如果不用中斷方式而以Polling方式取樣,請問電路應如何改。

將中斷源接至55的某個IO上,用程式去進行輪詢的工作。

Ⅲ、何以Digital接地與Analog接地要不一樣,又如何保證這兩個接地之間 的電位差不會過大。

數位地的雜訊相對於類比地來說過大,造成資訊的干擾會很嚴重,可以在 數位地跟類比地間加上電容。